Hot Products
  • LiFePO4  RV/LEV Batteries
    LiFePO4 RV/LEV Batteries 12V 120Ah

    1. Inbuilt Military Standard BMS: It has a built-in Multi-functional 120A continuous BMS, 360A for 30 sec peak, with high-quality IC and MosFET for over-current, over-discharge, over-charge, short-circuit, adverse-polarity connection, balancing functions. 2. Wide Applications: It can be used for solar energy 1

  • lithium ion battery 24v 10ah
    LiFePO4 Solar Energy Storage System ESS Battery 24V100Ah

    LiFePO4 batteries for solar storage: Cycle stability at high current, Fast charging within 1 hour, Deep discharge protection, overcharge protection, Voltage and temperature monitoring, Single cell monitoring, State of charge determination(SOC and SOH).

  • LiFePO4  RV/LEV Batteries
    LiFePO4 Marine Batteries 12V 48V 240Ah Battery Pack Custom

    Li-ion Marine Batteries  12V 48V 240Ah: Light weight and strong power, sell to France and Russia and gain best praise, customers show it on their website to expand markets.

What is Microgrids? 2018-01-17

What is Microgrids?

Microgrids are sub-category of the regional electrical grid that have the ability to operate independent, or “island,” from the local utility. Microgrids normally operate in parallel with the utility, but they can operate in an isolated mode when utility service is interrupted or providing poor power quality. The design and operation of microgrids are optimized around the needs of the specific end users they serve. Because of their closer proximity to the end user’s loads, microgrids can provide more reliable and resilient power and a lower net cost of thermal and electric energy than can many utilities. They also are less subject to storm damage than long overhead utility cables. Microgrids can include conventional power generating equipment, energy storage, and renewables.

Benefits of microgrids

  • Microgrids carry a number of benefits. Some of the reasons organizations establish microgrids include:
  • Produce heat and power less expensively than a centralized utility company, i.e., achieve lower lifecycle costs.
  • Achieve a lower carbon footprint than when producing heating and cooling on-site, while purchasing power from offsite.
  • Minimize impact of weather emergencies on core business operations.
  • Provide higher security against intentional malicious acts.
  • Provide higher-quality power than is available from the utility. In particular, some industrial applications, computing, and research facilities need highly stable voltage, frequency, and power factor to avoid interfering with their work.
  • Avoid the need for extensive utility distribution infrastructure upgrades.
  • Produce additional revenue by participating in transactional relationships with energy markets.
  • Improve society through job creation in communities and local power generation.

Who owns microgrids?

Microgrids are owned and operated by college and university campuses, military bases, hospitals, housing complexes, research facilities, and some municipalities and businesses. Typically, these are organizations that place a high value on energy reliability, efficiency, security, power quality, or minimized environmental impact.

  • The community case for microgrids

The presence of a microgrid benefits a community beyond the microgrid’s boundaries. When microgrids operate in parallel (synchronized) with the utility grid, they help stabilize local voltage, frequency, and power quality. These benefits don’t stop at the electric meter. They also extend to the community. Similarly, microgrids that are economically dispatched can sell power to the surrounding grid at times when they can operate less expensively than the utility, i.e., they reduce net cost for all power consumers.

Microgrids exist in the communities they serve, thus they are more likely to be sources of local employment than a utility power station 100 miles or so away. Microgrids can take advantage of specialized local fuel supplies—such as landfill gas or urban wood waste—that may be too expensive to transport to a distant power plant. In this way, they can turn something that might otherwise be seen as a waste into a useful resource.

  • The security case for microgrids

Microgrids tend to be smaller and scattered throughout a region, instead of large and centralized. They can take advantage of local labor and fuel supplies. The failure of one microgrid rarely has a broad regional impact. But having one microgrid remain operational during a regional emergency can offer a point of refuge and safety to first-responders or people displaced from the region.

During Hurricane Sandy, many CHP microgrid systems continued to operate even while the surrounding towns were dark. For example, Co-Op City in the Bronx, a borough of NYC; Princeton University; New York University; and Nassau cogeneration facility (which supports a hospital) maintained core business operations and were able to be places of refuge for the surrounding communities.

Copyright © 2025 www.smartbatteryeco.com.All Rights Reserved.

Sitemap XML

Leave a message

Kokpower

    If You Have Any Questions Or Inquiries Please Call Us Or Email Us By Sending a Message.

   

The professional team to service !

contact us now